
Natural Language Engineering 2 (3) : 211–228 # 1996 Cambridge University Press 211

Prototype of a second language writing tool
for French speakers writing in English*

ETIENNE CORNU, NATALIE KU> BLER†, FRANCK BODMER‡,

FRANÇOIS GROSJEAN, LYSIANE GROSJEAN, NICOLAS LE; WY,

CORNELIA TSCHICHOLD§ and CORINNE TSCHUMI

Language and Speech Processing Laboratory, Uniäersity of NeuchaW tel, Switzerland

(Receiäed 21 May 1996; reäised: 20 Noäember 1996)

Abstract

Language tools that help people with their writing are now usually included in today’s word
processors. Although these various tools provide increasing support to native speakers of a
language, they are much less useful to non-native speakers who are writing in their second
language (e.g. French speakers writing in English). Real errors may go undetected and
potential errors or non-errors that are flagged by the system may be taken to be genuine errors
by the non-native speaker. In this paper, we present the prototype of an English writing tool
which is aimed at helping speakers of French write in English. We first discuss the kind of
problems non-native speakers have when writing in a second language. We then explain how
we collected a corpus of errors which we used to build a typology of errors needed in the
various stages of the project. This is followed by an overview of the prototype which contains
a number of writing aids (dictionaries, on-line grammar helps, verb conjugator, etc.) and two
checking tools : a problem word highlighter which lists all the potentially di�cult words that
cannot be dealt with correctly by the system (false friends, confusions, etc.) and a grammar
checker which detects and corrects morphological and syntactic errors. We describe in detail
the automata formalism we use to extract linguistic information, test syntactic environments
and detect and correct errors. Finally, we present a first evaluation of the correction capacity
of our grammar checker as compared to that of commercially available systems.

Most of today’s English word processing programs include a set of tools to help

people with their writing. In addition to a thesaurus and a spell checker, they

increasingly provide a grammar checker that identifies non-standard style and a

number of grammatical errors. It is generally accepted that these tools provide good

* The research presented here was part of a three-year project funded by the Swiss Committee for the
Encouragement of Scientific Research (CERS}KWF 2054.2). The authors would like to thank
Jacqueline Gremaud-Brandhorst, Catherine Liechti and Alain Matthey for their help during the project.
Requests for reprints should be sent to: Dr. François Grosjean, Laboratoire de traitement du langage
et de la parole, Universite! de Neucha# tel, Avenue du Premier-Mars 26, 2000 Neucha# tel, Switzerland. E-
mail : francois.grosjean!lettres.unine.ch

† Now at CERIL, University of Paris VII and at the Laboratoire de linguistique informatique, University
of Paris XIII, France.

‡ Now at the Institut fu$ r deutsche Sprache, Mannheim, Germany.
§ Also at the English Seminar, University of Basel, Switzerland.

�))CE,��,,, 75#6D 8�9 BD��7BD9�CDB8*7)��0��	/1���.�	��1��

1�����.��1�	
0B,A"B5898�:DB#��))CE,��,,, 75#6D 8�9 BD��7BD9 �4A +9DE)9�89�29*7�5)9"��BA��	�37)����
�5)���,�	,����E*6!97)�)B�)�9�/5#6D 8�9�/BD9�)9D#E�B:�*E9��5+5 "56"9�5)��))CE,��,,, 75#6D 8�9 BD��7BD9�)9D#E

212 E. Cornu and others

support to native speakers of English but it is not clear that they are as useful to non-

native speakers. As many years of research in applied linguistics have shown, non-

native speakers make errors that are quite often di�erent from those of native

speakers and from those of speakers of other languages. This is due to the fact that

many of their errors are directly linked to their first language. Thus, for example,

when speakers of French write in English, their errors will often be di�erent from

those of native speakers of English or, for that matter, from those of native speakers

of Spanish or German. Current monolingual grammar checkers do not take these

di�erences into account and hence are not as helpful as they could be to non-native

speakers.

It was with this problem in mind that we developed a prototype of a second

language writing tool aimed specifically at helping native speakers of French when

writing in English. In order to meet all the writing and checking needs of these users,

our prototype contains writing aids (dictionaries, an on-line grammar, a verb

conjugator, etc.) and two checking tools : a problem word highlighter which lists all

the potentially di�cult words in the text (false friends, confusions, etc.) and a

grammar checker which detects and corrects morphological and syntactic errors. (For

other projects that have dealt with second language grammar checking over the last

few years, see Barchan et al., 1986; Yazdani, 1993; Granger and Meunier, 1994; and

Brehony and Ryan, 1994, among others).

In this paper, we first present the problems non-native speakers have when writing

in a second language. We then explain how we collected a corpus of errors which we

used to build a typology of errors needed for the various stages of the project. This

is followed by an overview of the prototype and of its writing and checking tools.

Next we describe in detail the grammar checker: the linguistic information needed,

the automata formalism implemented, and the detection, correction and interaction

procedures used. We end with a first evaluation of the grammar checker as compared

to that of commercially available systems.

1 Writing in a second language

As research in applied linguistics has shown, non-native speakers do not make the

same kinds of errors as native speakers. The competence they have in their second

language is influenced by their two languages, the first and the second (Corder, 1967;

Selinker, 1972, 1992). The errors they make when speaking or writing their second

language are of two types – interlanguage errors and intralanguage errors. Inter-

language errors, also called interferences, are due to the first language influencing the

second language. For example, a French person might write, ‘*Sam steals money to

Max’, based on the French structure, ‘Sam vole de l‘argent a' Max’, where ‘a' ’ is

translated with ‘to’ instead of ‘ from’. (Note that ‘ to’ is the most frequent translation

of French ‘a' ’). Interlanguage errors can be found at all levels of linguistic analysis :

orthographic (e.g. ‘*adress ’ based on French ‘adresse ’), lexical (e.g. ‘*the needles of

the clock’ based on French, ‘ les aiguilles d’une montre ’), syntactic (e.g. ‘*he asked

to his friend’ based on, ‘ il a demande! a' son ami’), etc. (see Grosjean, 1982, for an

overview).

�))CE,��,,, 75#6D 8�9 BD��7BD9�CDB8*7)��0��	/1���.�	��1��

1�����.��1�	
0B,A"B5898�:DB#��))CE,��,,, 75#6D 8�9 BD��7BD9 �4A +9DE)9�89�29*7�5)9"��BA��	�37)����
�5)���,�	,����E*6!97)�)B�)�9�/5#6D 8�9�/BD9�)9D#E�B:�*E9��5+5 "56"9�5)��))CE,��,,, 75#6D 8�9 BD��7BD9�)9D#E

Second language writing tool 213

Intralanguage errors, on the other hand, are characterized mainly by over-

generalizations or false generalizations which can also be made by native speakers of

the language (e.g. children, adults under stress, etc.). They occur when a rule is

applied incorrectly as, for example, when verbs with an irregular past tense are given

the regular ‘ -ed’ form (e.g. *gived, *runned, etc.). Other types of intralanguage errors,

more specific to non-native speakers this time, involve simplification such as dropping

pluralization and tense markers, omitting function words, simplifying the syntax,

dropping the auxiliaries, etc. Yet other errors involve hypercorrection and the

avoidance of words, expressions and structures that may be too di�cult for the non-

native speaker.

Given the type of errors made by non-native speakers, it is no surprise that current

monolingual grammar checkers are not really adequate. Those that use a complete

parse approach have problems as errors not taken into account in the analysis lead

to a parsing failure, and thereby to the frequent inability of the system to identify

where the problem lies and what it is. For grammar checkers that use a less

demanding approach, the error might be detected but it may not be identified

properly and hence ways of correcting the error may not be suggested. Leaving non-

native speakers to identify and correct an error that has been detected is not a good

solution as they do not have the kind of language intuition that native speakers

usually bring to a correction task. In addition, simply flagging potential errors that

pertain to levels of analysis beyond the scope of the grammar checker (e.g. semantic

errors) is inappropriate as, once again, non-native speakers do not have the

competence needed in their second language to make the appropriate decision. Based

on a potential error message, they might modify a word or a sentence that is not in

fact wrong and hence make things worse. Finally, it is important that when writing

in a second language, non-native speakers have available to them appropriate aids

and help messages, in their native language preferably, so as to understand the

problem fully.

In summary, grammar checkers for non-native speakers (also called bilingual

grammar checkers) have an important role to play, all the more so if one considers

the amount of writing that takes place today in people’s second languages (for

example, in English as a second language).

2 Error typology

Before starting to build our prototype, we undertook an in-depth analysis of the

errors made by native speakers of French when writing in English. To do this, we

identified four possible sources of information: teachers of English who are familiar

with the errors French speakers make, published lists of errors made by learners of

English, comparative analyses of French and English structures, and texts written in

English by French native speakers. Although each source by itself was not fully

su�cient for our needs (and sometimes caused problems as published lists of errors

are not exhaustive, teachers’ intuitions are sometimes di�erent, etc.), we found that

a combination of all four sources was the best solution. We paid particular attention

to comparative analyses (see, for example, Vinay and Darbelnay, 1977; Guillemin-

�))CE,��,,, 75#6D 8�9 BD��7BD9�CDB8*7)��0��	/1���.�	��1��

1�����.��1�	
0B,A"B5898�:DB#��))CE,��,,, 75#6D 8�9 BD��7BD9 �4A +9DE)9�89�29*7�5)9"��BA��	�37)����
�5)���,�	,����E*6!97)�)B�)�9�/5#6D 8�9�/BD9�)9D#E�B:�*E9��5+5 "56"9�5)��))CE,��,,, 75#6D 8�9 BD��7BD9�)9D#E

214 E. Cornu and others

Flescher, 1981; Ku$ bler, 1992, 1995) and to texts written by French speakers. We

collected high school and business school written exams and essays (27,000 words in

all) and had them corrected by three native speakers of English (all ESL teachers).

This produced 2862 errors to which we added those collected from published lists of

errors and from comparative analyses.

Using these various sources of information, we built a typology of errors which we

divided into seven sections. The first section concerned graphical form and contained

errors caused by spelling (e.g. *appartement, *marchant, *developped), phonology

(e.g. *catastrophy, *distroyed) and morphology (e.g. *certains childrens). Also

included in this section were mixtures of British and American spelling (e.g. *honor

and labour). The next four sections dealt with parts of speech: adjectives, adverbs,

nouns and verbs. For each part of speech, errors were subdivided into those that

pertained to morphology, tense, structure, the lexicon, etc. For example, the errors

that concerned adjectives were divided up as follows: morphological errors (e.g. *He

was the most small in the group), lexical confusions due to syntax (e.g. *It has a

religion e�ect) or to semantics (e.g. *He has a bigger allowance and it’s not just),

nonce borrowings (e.g. *This phenomenon remains inexplicated) and syntactic errors

(e.g. *In the few last years). The sixth section dealt with groups of words, such as

compounds, idioms or support verbs followed by predicate nouns, many of which are

translated literally into English (e.g. *I have cold) or not used correctly (*Is it really

twice heavier?). Finally, the seventh section concerned errors that pertain to the

sentence as a whole including negations (*She came not…), reference pronouns (*If

the firm calls, tell her to…), word order (*He asked me when are we leaving…),

agreement (*There is people who think…), subordinate clauses (*He was sent abroad

for learning Spanish…), etc.

Our typology proved to be very useful throughout the project. We used it, among

other things, to decide which errors to include in the various parts of the prototype:

the writing aids, the problem word highlighter and the grammar checker. A number

of factors were taken into account when deciding whether to cover an error, especially

in the grammar checker. Among these were the frequency of the error (obtained from

the corpus), its impact on comprehension and, above all, the computational

complexity involved in detecting and correcting it.

3 The prototype

When designing our prototype, we tried to keep in mind a number of guiding

principles. We wanted a tool that could be of help to non-native speakers while they

were in the process of writing their text and during the correction stage once it was

done. Thus, we decided that the prototype should contain both writing aids and

checking devices. We also wanted a tool geared in every way to non-native speakers

(in our case, French speakers writing in English). As we have seen, their writing and

checking needs are quite di�erent from those of native speakers and their feeling of

security, or rather insecurity, concerning their written language is also quite di�erent.

We therefore wanted our prototype to be ‘knowledgeable ’ about second language

writing and its problems, and to be as helpful and as reassuring as possible. Other

�))CE,��,,, 75#6D 8�9 BD��7BD9�CDB8*7)��0��	/1���.�	��1��

1�����.��1�	
0B,A"B5898�:DB#��))CE,��,,, 75#6D 8�9 BD��7BD9 �4A +9DE)9�89�29*7�5)9"��BA��	�37)����
�5)���,�	,����E*6!97)�)B�)�9�/5#6D 8�9�/BD9�)9D#E�B:�*E9��5+5 "56"9�5)��))CE,��,,, 75#6D 8�9 BD��7BD9�)9D#E

Second language writing tool 215

guiding principles we gave ourselves were: to detect and correct as many errors as

possible, to concentrate on the most frequent errors if at all possible, to limit

overflagging (false alarms) to a minimum (see the reasons given in section 1), to have

the system interact with the user whenever necessary (but not too often), to make use

of up-to-date technology, and finally, to use linguistic databases that could be easily

updated.

The prototype includes a set of writing aids, a problem word highlighter and a

grammar checker. The prototype runs under Microsoft Windows and has an interface

developed with Visual Basic. It is composed of a number of modules that were

developed independently and its code is completely portable between the Macintosh

and the PC. At the top level, the prototype provides an editing window where files can

be opened, saved and closed and where text can be cut, copied and pasted. A number

of writing aids can be accessed directly from the editing window through simple menu

selection. They are :

(a) An English dictionary and a French-English bilingual dictionary (simulated at

this stage).

(b) A verb conjugator which allows the user to enter a verb and obtain its forms

in all persons and tenses.

(c) A set expression translator which accepts French set expressions and which

produces their counterpart in English (e.g. for ‘ tenir compte de X’ the

translator proposes ‘ to take X into account’). These expressions cannot be

translated literally into the other language and yet they are used quite often,

hence the need for this kind of writing aid.

(d) An on-line grammar designed specifically for French speakers. It gives advice

in French on specific problems that they have when they write in English, e.g.

the tense system, prepositions, the use of the infinitive and the gerund, ‘since’

and ‘for ’, word order, indirect speech, and so on. Each grammatical topic is

explained in simple, non-technical language and examples are given. This aid

is accessible both during editing and during the correction phase.

(e) Finally, a list of di�cult words which includes false friends, confusions,

irregular verbs and borrowings. For example, users are told that the adjective

‘satisfied’ is followed by the preposition ‘with’ and not ‘of ’, and the verb ‘to

disobey’ is transitive in English whereas it is followed by a preposition in

French (‘de! sobe! ir a' ’). Each word’s di�culties are explained and examples of

correct use are given.

The problem word highlighter, one of the two checking tools in the prototype, is

used to show all the potential lexical errors in the text. When examining the errors in

our typology, we quickly realized, like others have done before us (Catt, 1988;

Thurmair, 1990; Payette and Hirst, 1992), that some errors could not be detected

automatically given the current state of natural language processing. These include

false friends (e.g. using ‘ library’ instead of ‘bookstore’ based on French ‘ librairie ’),

confusions (e.g. French ‘partie ’ can be translated as ‘part ’ or ‘game’), foreign loans

(e.g. the word ‘training’ used instead of ‘ tracksuit ’ because it originally comes from

English and means tracksuit in French), etc. These lexical di�culties normally need

�))CE,��,,, 75#6D 8�9 BD��7BD9�CDB8*7)��0��	/1���.�	��1��

1�����.��1�	
0B,A"B5898�:DB#��))CE,��,,, 75#6D 8�9 BD��7BD9 �4A +9DE)9�89�29*7�5)9"��BA��	�37)����
�5)���,�	,����E*6!97)�)B�)�9�/5#6D 8�9�/BD9�)9D#E�B:�*E9��5+5 "56"9�5)��))CE,��,,, 75#6D 8�9 BD��7BD9�)9D#E

216 E. Cornu and others

semantic and pragmatic analyses to be dealt with appropriately. Clearly, most

grammar checkers cannot do this, and they therefore fall back on flagging these errors

without being able to determine whether they are used erroneously in the text. Most

often this approach results in heavy overflagging. This is a real problem when one is

dealing with non-native speakers who, on seeing such a message, may think they have

made an error when this may not be the case. To avoid this problem, we decided to

deal with potential lexical errors separately. Thus, users can activate this highlighter

whenever they wish to and they have all the problem words in the text appear on the

left-hand side of the screen. When they click on any one of these words, a text window

appears which gives them information on the various uses of this word. Such an

approach has two advantages. First, it is the user who decides on the words that need

to be explained, thereby saving a lot of time. Second, problems that cannot be

processed automatically can be handled here, thus reducing the false alarm rate of the

grammar checker.

The second checking tool is the grammar checker. It can be run during editing or

afterwards and works sentence by sentence. When it identifies an error, a window is

displayed which contains two main text fields : the section of the text where the error

is located, and an explanation of the error along with suggestions for correcting it.

A number of options are then o�ered to the user : correct the error manually by

editing the text, obtain more information on the grammatical aspects of the error,

select a word to insert from a list of words proposed, click on a button to execute the

action suggested by the grammar checker (insert, replace, delete or permute), or

disregard the error and continue. The user can also open the grammar checker’s

option screen and activate or deactivate the error categories to be used. Below we

describe in detail how grammar checking is done.

4 Grammar checking

The grammar checker uses a set of rules represented as a variant of finite-state

automata (Winograd, 1983; Allen, 1987; Silberztein, 1993) which seek specific

sequences of elements in the input text. The automata consist in lists of conditions

that apply to adjacent words or phrases. They are initialized by an anchoring arc

which is inside the automaton (and not normally on its left-hand side). The anchoring

takes place when a word matches the conditions assigned to this arc. The text is then

scanned, first to the right and then to the left, according to the conditions in the arcs

to the right and to the left of the anchoring arc. An automaton succeeds if all its arcs

match some input text. This means that a particular text pattern, or an error, has been

detected. We use automata both to extract syntactic information from the text (these

are pre-processing automata) and to detect errors in the text (error detection

automata). Because the automata are all finite-state automata, and hence equivalent

to deterministic automata (Partee et al., 1990), non-determinism is not a problem.

The checker does not attempt to parse sentences fully. Instead, preprocessing

automata analyse certain islands which can later be used by error detection automata.

This island parsing approach, which is followed by an error search, has at least two

advantages over the more traditional methods based on a full parse. First, second

�))CE,��,,, 75#6D 8�9 BD��7BD9�CDB8*7)��0��	/1���.�	��1��

1�����.��1�	
0B,A"B5898�:DB#��))CE,��,,, 75#6D 8�9 BD��7BD9 �4A +9DE)9�89�29*7�5)9"��BA��	�37)����
�5)���,�	,����E*6!97)�)B�)�9�/5#6D 8�9�/BD9�)9D#E�B:�*E9��5+5 "56"9�5)��))CE,��,,, 75#6D 8�9 BD��7BD9�)9D#E

Second language writing tool 217

language texts may contain many errors (several within the same sentence) which can

cause the parsing process to fail completely. Even if the texts are purged of these

errors during a preceding stage, it is not clear whether today’s parsing algorithms are

as yet suitable in this situation (see Cornu, 1992). Second, automata can be

programmed to identify specific situations where errors occur and thus they do not

have to take care of non-relevant parts of the text.

4.1 Linguistic information used by the automata

Due to the extremely wide range of errors that the error detection automata have to

detect, their formalism was designed so as to let them have access to a full spectrum

of linguistic information available in the system, such as canonical and inflected word

forms as well as morphological, lexical, syntactic and some semantic features. Some

rules match specific word sequences, while others use noun phrases or prepositional

phrases. The linguist writing the automaton determines the type of data required to

identify each error.

Error detection automata rely on four sources of information:

(a) The main dictionary, which includes the syntactic categories of each word,

some morphological information and a few syntactic and semantic features

(such as whether a noun is countable, a verb is transitive, a pronoun is

possessive, etc.). The dictionary is an extract of CELEX (Burnage, 1990) and

contains approximately 4800 canonical forms corresponding to more than

20,000 inflected forms.

(b) A set of lists that contain words which share identical semantic or syntactic

features. Some lists are very general such as, for example, the one containing

words with the feature PLACE (e.g. ‘o�ce’, ‘Switzerland’) or TIME (e.g.

‘Wednesday’, ‘week’). Others are more specific such as the one containing

verbs that are not usually used in a continuous tense, like ‘ to last ’ and ‘to

seem’.

(c) Noun phrases (simple and complex), marked with time and location when

appropriate, as well as head, number and person features.

(d) Tense, mode and aspect features for all verb forms.

Four software modules obtain the above-mentioned information and prepare it for

the detection automata:

1. A tokenizer (or segmenter) divides the input text into words, numbers and

punctuation marks. Each word can then be looked up in the dictionary. For

research purposes, we correct misspelled words by hand. A spelling correction

module would normally be activated at this stage to handle the words not found

in the dictionary.

2. A neural-network algorithm eliminates the non-relevant syntactic categories for

multi-category words and keeps only one (see Bodmer, 1994). For example, in

‘The can was rusted’, ‘can’ is categorized as a noun and not as a verb.

3. A noun phrase parser identifies simple non-recursive noun phrases. It is based

on an algorithm of the type presented in Church (1988), and was trained on part

�))CE,��,,, 75#6D 8�9 BD��7BD9�CDB8*7)��0��	/1���.�	��1��

1�����.��1�	
0B,A"B5898�:DB#��))CE,��,,, 75#6D 8�9 BD��7BD9 �4A +9DE)9�89�29*7�5)9"��BA��	�37)����
�5)���,�	,����E*6!97)�)B�)�9�/5#6D 8�9�/BD9�)9D#E�B:�*E9��5+5 "56"9�5)��))CE,��,,, 75#6D 8�9 BD��7BD9�)9D#E

218 E. Cornu and others

of our error corpus where the NPs had been marked manually. The correct

syntactic category is identified with a high degree of success by the module.

4. Pre-processing automata build complex noun phrases (e.g. ‘ the last day of the

month’) and determine the noun phrase features described above. They also

analyse all verb forms and assign tense, voice and aspect features to the main

verbs.

4.2 Automata formalism

A number of constraints were placed on the metalanguage for specifying the pre-

processing and error detection automata. The formalism had to be powerful enough

to allow access to the wide range of information that was available but, at the same

time, it had to be transparent to the linguists developing the rules. In addition, the

automata execution module had to be easily integrated into an operating environment

such as Microsoft Windows. The result is a formalism very similar to the one used by

Prolog where the individual arcs that form the automata are enclosed in square

brackets (‘ […]’). The conditions on the input text are separated by commas and the

features are written in plain text or with mnemonic abbreviations. The automata are

not executed in Prolog, but by a module written in C that allows for fast execution

and easy integration into the user-interface development tools.

Just as in Winograd’s approach, the automata use registers to carry information

between arcs. These registers also carry all the information needed by the correction

module. Automaton 1 shows the simplified form of a pre-processing automaton that

identifies conditional verbs and assigns a series of features to the main verb (as in

‘You should be dancing’) :

Automaton1

! [CATØV, (IFØ ‘would’rIFØ ‘ should’rIFØ ‘could’rIFØ ‘might ’)]

(AFFØ™ $S)

[IFØ ‘not ’, NEGØ™ $S]*1

[IFØ ‘be ’]

[CATØV, TNSØ ING, VFjTENSE:ØCOND, VFjASPECT:ØCONT,

VFjVOICE:ØACT, VFjSTATUS:Ø $S]

The following takes place in this automaton:

(a) The first arc, which is also the anchoring arc (!), matches the words ‘would’,

‘ should’, ‘could’ or ‘might ’.

(b) An action then occurs (it is written between parentheses to indicate that it does

not match a word in the input text). If the first arc has succeeded, the action

in the second line is executed, namely, putting the value AFF (for ‘a�rmative ’)

into register $S.

(c) The second arc (third line) optionally matches the word ‘not ’. If that word is

present in this position in the text, then the value of register $S is changed to

NEG (for ‘negative’). At this stage, therefore, the value of $S is NEG if the

word ‘not ’ is present in the input text, and AFF if it is not present.

(d) The third arc simply matches the word ‘be’.

�))CE,��,,, 75#6D 8�9 BD��7BD9�CDB8*7)��0��	/1���.�	��1��

1�����.��1�	
0B,A"B5898�:DB#��))CE,��,,, 75#6D 8�9 BD��7BD9 �4A +9DE)9�89�29*7�5)9"��BA��	�37)����
�5)���,�	,����E*6!97)�)B�)�9�/5#6D 8�9�/BD9�)9D#E�B:�*E9��5+5 "56"9�5)��))CE,��,,, 75#6D 8�9 BD��7BD9�)9D#E

Second language writing tool 219

(e) The fourth arc performs two operations. First, it checks that the word is a verb

in the present participle form (‘-ing’ form). Then it defines the four attributes

VFjTENSE, VFjASPECT, VFjVOICE and VFjSTATUS for the word

which is identified as the main verb. Note that the value of $S has been carried

through the automaton and that it is used to set the value of the feature

VFjSTATUS.

Arcs that match noun phrases have the format ‘©NP (conditions)™ ’. The

conditions specified inside the delimiters apply to the noun phrase itself. This may

include matching the entire noun phrase or looking for specific words. The two

examples below illustrate how these types of arcs are used in detection automata.

Automaton2

©NP™
! [CATØADV, ≠ADVjPOS]

[CATØV, (≠MODAL r ≠AUX)] ≠2

[CATØV]

This simplified automaton locates errors in constructions such as ‘*He never may

come back’ where the adverb is misplaced.

(a) The anchoring arc (preceded by !) matches adverbs included in the

ADVjPOS list, such as ‘ frequently ’, ‘often’, ‘now’.

(b) A noun phrase is looked for to the left of the anchoring arc (without any

special conditions).

(c) One or two modal or auxiliary verbs followed by a verb are then matched on

the right-hand side of the anchoring arc.

Automaton3

! [IFØ ‘during’]

[IFØ ‘almost ’ r IFØ ‘nearly’ r IFØ ‘about ’] *1

©NP ! [≠NPjHEAD, NBRØPLUR, ≠TEMP]™

In this second example, also presented in its simplified form, the automaton identifies

the wrong preposition in prepositional phrases such as ‘*during five hours’.

(a) The first arc matches the word ‘during’.

(b) The second arc optionally matches one of three adverbs.

(c) The third arc matches a noun phrase and checks if its head is plural and

belongs to the TEMP list which contains temporal words.

4.3 Error detection

So far, we have seen that automata are used for a number of purposes. Their

formalism allows them to identify the main verb and assign tense parameters to it

(Automaton 1), detect the wrong position of adverbs (Automaton 2) or detect the

wrong preposition in prepositional phrases (Automaton 3). To take advantage of this

flexibility, we developed a schedule program, which defines the role of each

�))CE,��,,, 75#6D 8�9 BD��7BD9�CDB8*7)��0��	/1���.�	��1��

1�����.��1�	
0B,A"B5898�:DB#��))CE,��,,, 75#6D 8�9 BD��7BD9 �4A +9DE)9�89�29*7�5)9"��BA��	�37)����
�5)���,�	,����E*6!97)�)B�)�9�/5#6D 8�9�/BD9�)9D#E�B:�*E9��5+5 "56"9�5)��))CE,��,,, 75#6D 8�9 BD��7BD9�)9D#E

220 E. Cornu and others

automaton within the error detection process. Thus, the process of identifying a

specific error can be broken down into a sequence of steps, such as extracting

information (e.g. the tense of the main verb), testing the syntactic environment (is a

particular noun phrase the subject of the verb?) and undertaking the actual error

detection (do the main verb’s number and person features match the subject’s?). The

schedule program also allows for local errors to be checked before those that involve

larger sequences of words.

The schedule program is divided into two sections: the pre-processing section,

where attributes are assigned to words, noun phrases and prepositional phrases, and

the detection section, which includes all error detection automata. The pre-processing

section includes automata such as Automaton 1, whose task is to find verbs in the

conditional. This pre-processing section mainly contains lists of automata grouped

according to their function. Here are two examples of such lists (the names of the

automata are given in brackets) :

List1

≤NPjHEAD¥

List2

≤NPjNBRjSINGjQUANT NPjNBRjGEN

NPjNBRjSINGjPRON NPjNBRjPLURjPRON

The first list only contains the automaton NPjHEAD which determines the head of

noun phrases, and the second list contains four automata that determine the number

of noun phrases.

In the detection section of the schedule program, the rule developer can use two

approaches to organize the automata. The first consists of simple lists, like the ones

in the pre-processing section. For example:

List3

510 ≤NjAGRjPLURjSINGj1 NjAGRjPLURjSINGj2

NjAGRjPLURjSINGj3

Here the number at the beginning (510) identifies the list. It links the grammar

corrector’s options to the automata group. The user can thus selectively activate or

deactivate the automata dealing with specific types of errors (subject-verb agreement,

use of tenses, prepositions, etc.). The second approach is a scheduling tree, used when

the triggering of some detection automata depends upon a given sentence structure.

In this case, one or more filter automata determine if a certain structure is present in

the text. If it is, the corresponding set of detection automata is triggered. The

following example illustrates this mechanism:

List4

FILTER

≤DATjVjFILj1 DATjVjFILj2

($RØR1) ≤SUFLUjPREPjDATVj1

($RØR2) ≤PREPjDATV STRUCTjDATjV1 STRUCTjDATjV2

END

�))CE,��,,, 75#6D 8�9 BD��7BD9�CDB8*7)��0��	/1���.�	��1��

1�����.��1�	
0B,A"B5898�:DB#��))CE,��,,, 75#6D 8�9 BD��7BD9 �4A +9DE)9�89�29*7�5)9"��BA��	�37)����
�5)���,�	,����E*6!97)�)B�)�9�/5#6D 8�9�/BD9�)9D#E�B:�*E9��5+5 "56"9�5)��))CE,��,,, 75#6D 8�9 BD��7BD9�)9D#E

Second language writing tool 221

Here the automata list containing DATjVjFILj1 and DATjVjFILj2 is executed

first. The two filter automata trigger on dative verbs that have certain characteristics.

If one of these two automata succeeds, it sets the value of register $R to R1, to R2

or to some other value. This determines which of the two other lists should be

executed next. Both of these lists deal with the presence or absence of a preposition

in the verb’s complement. If the value of register $R is R1 then the list with

SUFLUjPREPjDATVj1 is executed. If the value is R2 then the second list is

executed. If the value is neither R1 nor R2 then processing continues normally.

4.4 Error correction

Once an error detection automaton has succeeded, indicating the presence of an error

in the text, the user is informed. This is done by displaying a message in the correction

window and presenting the user with a set of choices. We have developed a set of nine

standardized user-interface dialog procedures. Each one corresponds to a specific

error correction situation. For example, Dialog Procedure 2 is applied when the

correction involves replacing a word or a set of words with one or more words, and

Dialog Procedure 3 involves inserting a new word.

The dialog procedures all require a certain number of parameters which are

attached to the error detection automata. They include:

(a) A dialog procedure number which specifies which dialog procedure is to be

applied.

(b) A message which contains the text to be presented to the user.

(c) A word list which contains all the words proposed to the user. This parameter

is used by the replacement and insertion dialog procedures.

(d) A linguistic help which identifies the help screen to be displayed when the user

presses the Help button.

In addition to these parameters, pre-defined registers are used to indicate where the

insertion, replacement, deletion or permutation must occur within the text. The value

of these registers is also used to insert parts of the input text into the error message

presented to the user.

Automaton 4 shows how a missing ‘s ’ in NPs such as ‘*these student ’ is identified.

Automaton4

©NP ! [IFØ ‘ these’, CURPOSØ™$L, CURPOSØ™$R]

[CATØN, NPjPOSØNPjLAS, CNUMB, CPLURjN, NBRØSING,

CURPOSØ™$Z, IFØ™$B] ™
≤
DIALOG PROCEDURE 2

MESSAGE ‘Il semble qu’il y ait un proble' me d’accord dans la se!quence cuc($L-

$Z)cv.Lemot cuthesecv doit e# tre suivi d’unnomaupluriel.Nous vous sugge! rons

de mettre cuc$Bcv au pluriel ou alors de remplacer cuthesecv par cuthiscv. ’

LIST ‘this ’

¥

�))CE,��,,, 75#6D 8�9 BD��7BD9�CDB8*7)��0��	/1���.�	��1��

1�����.��1�	
0B,A"B5898�:DB#��))CE,��,,, 75#6D 8�9 BD��7BD9 �4A +9DE)9�89�29*7�5)9"��BA��	�37)����
�5)���,�	,����E*6!97)�)B�)�9�/5#6D 8�9�/BD9�)9D#E�B:�*E9��5+5 "56"9�5)��))CE,��,,, 75#6D 8�9 BD��7BD9�)9D#E

222 E. Cornu and others

As can be seen, the French-speaking user receives the message in French. Here is an

English translation of this particular message: ‘There seems to be an agreement error

in the sequence cuc($L-$Z)cv. The word cuthesecv must be followed by a plural noun.

Wesuggest that youuse theplural formofcuc$Bcvor replacecuthesecvwithcuthiscv. ’

Here is what happens in this automaton:

(a) Registers $L and $R (for left and right) identify where the replacement should

occur if the user selects the Replace button. Register $Z identifies the right

edge of the noun phrase where the error occurred and register $B contains the

noun in question.

(b) Registers $L, $Z and $B are used in the message that appears on the screen for

the user. ‘ ($L-$Z)’ is replaced by the segment of the input text between

positions $L and $Z (i.e. ‘*these student ’), and ‘$B’ is replaced by ‘student ’.

(c) When presented to the user, the parts of the message between the control

characters cu and cv are underlined and appear in red.

(d) DIALOG PROCEDURE 2 indicates that this particular procedure is to be

applied.

(e) LIST ‘this ’ indicates that a list with the single word ‘this ’ will be presented to

the user. When the user presses ‘Replace’, the word selected in the list replaces

the word in position $L (i.e. ‘ this ’ replaces ‘ these’). In other situations, the list

may contain more than one word.

4.5 User interaction

Three special dialog procedures (7, 8 and 9) are used to dialog with the user. This is

sometimes required when it is not possible to determine all sentence attributes

automatically. Normally, when no user interaction is possible, the rule designer is

faced with a dilemma – either not process these types of errors, or try to tackle them,

but with the risk of overflagging, that is detecting an error when there is none. With

these dialog procedures, however, the rule designer can have the system ask the user

for some information and then proceed based on the answer that has been given.

Consider Automaton 5 (again simplified), which identifies erroneous sequences

such as ‘*the more great ’, i.e. ‘ the ’≠‘more’≠an adjective belonging to the list of

adjectives forming their comparatives by adding -er (≠ADJjER).

Automaton5

[IF1 ‘all ’]

[IFØ ‘ the ’, CURPOSØ™$L]

! [IFØ ‘more’]

[CATØA, ≠ADJjER, CURPOSØ™$R]

≤
DIALOG PROCEDURE 7

MESSAGE ‘La se!quence cuc($L-$R)cv ne semble pas correcte. Vouliez-vous

exprimer (A) un comparatif, ex. ‘‘plus beau que’’ ou (B) un superlatif, ex. ‘‘ le

plus beau’’? ’

¥

�))CE,��,,, 75#6D 8�9 BD��7BD9�CDB8*7)��0��	/1���.�	��1��

1�����.��1�	
0B,A"B5898�:DB#��))CE,��,,, 75#6D 8�9 BD��7BD9 �4A +9DE)9�89�29*7�5)9"��BA��	�37)����
�5)���,�	,����E*6!97)�)B�)�9�/5#6D 8�9�/BD9�)9D#E�B:�*E9��5+5 "56"9�5)��))CE,��,,, 75#6D 8�9 BD��7BD9�)9D#E

Second language writing tool 223

Translation of the message: ‘The sequence cuc($L-$R)cv looks incorrect. Did you

want to express (A) the comparative, as in ‘‘more beautiful than’’ or (B) the

superlative, as in ‘‘ the most beautiful ’’ ? ’

When this type of sequence has been identified, the type of action required depends

upon whether the user wanted to use a comparative or a superlative adjective. The

system needs to tell the user to replace ‘*more great ’ with ‘greater ’ in the first case

and with ‘(the) greatest ’ in the second. The scheduling program is as follows:

List5

FILTER FINDjTHEjMOREjADJ

() THEjMOREjADJ

($QØR1) THEjMOREjADJjCOMP

($QØR2) THEjMOREjADJjSUP

END

The automaton FINDjTHEjMOREjADJ first identifies the syntactic environment.

The THEjMOREjADJ automaton is then executed and the message it contains is

displayed. The user is presented with buttons labelled A and B. The user’s input sets

the value of register $Q to R1 or R2 depending on which button s}he presses. Control

then returns to the schedule program which executes either automaton

THEjMOREjADJjCOMP (if A was pressed) or automaton

THEjMOREjADJjSUP (if B was pressed).

5 Evaluation of the grammar checker

Although our grammar checker is still at the prototype stage, we decided to undertake

a first evaluation of its performance. We used an evaluation kit developed by

Tschichold (1991) and compared our prototype to three commercial grammar

checkers : Correct Grammar for Macintosh (version 2.0 of the monolingual English

grammar checker developed by Lifetree Software and Houghton Mi�in), Grammatik

for Macintosh (the English for French users 4.2 version of the Reference Software

grammar checker) and WinProof for PC (version 4.0 of Lexpertise Linguistic

Software’s English grammar checker for French speakers, which is based on

Houghton Mi�in’s CorrecText to which has been added specific second language

error detection capabilities). It should be noted that we did not include our writing

aids or our problem word highlighter in the evaluation nor did we examine other

aspects such as user interface, dictionary access, compatibility with word processors

and so on. The evaluation kit we used contains a number of tests that examine the

kind of errors made by French native speakers when writing in English. These have

been classified into eleven categories : verb form (*She regret it), verb tense and aspect

(e.g. *She is born in Paris in 1956), nouns (e.g. *I work hard all the times), determiners

(e.g. *He waited all a week), adjectives and adverbs (e.g. *Let’s help these poors

animals), prepositions (e.g. *She resembles to her father), pronouns (*They found

pleasant to see you), conjunctions and inversion (e.g. *He said that no), lexical errors

(*This remembers me of my brother), style (e.g. She says she needs diapers and a

�))CE,��,,, 75#6D 8�9 BD��7BD9�CDB8*7)��0��	/1���.�	��1��

1�����.��1�	
0B,A"B5898�:DB#��))CE,��,,, 75#6D 8�9 BD��7BD9 �4A +9DE)9�89�29*7�5)9"��BA��	�37)����
�5)���,�	,����E*6!97)�)B�)�9�/5#6D 8�9�/BD9�)9D#E�B:�*E9��5+5 "56"9�5)��))CE,��,,, 75#6D 8�9 BD��7BD9�)9D#E

224 E. Cornu and others

pram) and continuous text (which contains errors taken from all categories).

Additional examples of test sentences are given in Appendix 1.

All categories contain 10 sentences with one error per sentence except for the last

category (continuous text) which contains 55 sentences. There are three possible

outcomes for each error, as can be seen in Table 1:

(a) it is detected as an error (we have called this a detection; cell A in the table),

(b) it is detected as a potential error (which we call a warning; cell B),

(c) it is not detected (no detection; cell C).

Table 1. Possible outcomes when an error and correct prose (No error) are processed

by a grammar checker. The score giäen to each outcome by the eäaluation kit are in

parentheses

Error status Detection Warning No detection

Error A (≠2) B (≠1) C (Æ1)
No error D (Æ2) E (Æ1) F (0)

As for the correct material in the rest of the sentence, there are also three possibilities :

(d) an ‘error ’ is detected where there is none (cell D),

(e) a warning message is given when the text is correct (cell E),

(f) no message is given (i.e. there is no error and no detection; cell F).

Thus, this test takes into account errors that are detected and not detected as well as

overflaggings, that is, false error detections and warnings (type D and E above). This

is particularly important as overflaggings can create much more confusion for non-

native speakers than for native speakers of a language.

A score, positive or negative, was given to each of the six outcomes, as can be seen

in Table 1. An appropriate detection or warning gets a positive score, whereas an

error that is not detected or detected erroneously (overflagging) gets a negative score.

We ran the test on all four grammar checkers, the three commercial checkers and our

own, and for each category, we subtracted the score obtained by each of the

commercial checkers from our prototype’s score. This showed how we fared. The

results are presented in Table 2. A positive number indicates how much better our

prototype does and a negative number how much worse. A yardstick to help

understand these di�erences is to keep in mind that 2 points in favor of our prototype

(a positive number in the table therefore) means either that we detected an error

which another grammar checker did not detect or that we did not detect a non-error

that the other checker did detect. On the contrary, a di�erence of minus 2 points

means either that we did not detect an error detected by another checker or that we

overflagged a non-error which it did not. As can be seen in the table, our prototype

does better on 30 out of the 33 possibilities (20 of those by 3 points or more), does

as well twice and does worse only once. Although the di�erences are never above 10

�))CE,��,,, 75#6D 8�9 BD��7BD9�CDB8*7)��0��	/1���.�	��1��

1�����.��1�	
0B,A"B5898�:DB#��))CE,��,,, 75#6D 8�9 BD��7BD9 �4A +9DE)9�89�29*7�5)9"��BA��	�37)����
�5)���,�	,����E*6!97)�)B�)�9�/5#6D 8�9�/BD9�)9D#E�B:�*E9��5+5 "56"9�5)��))CE,��,,, 75#6D 8�9 BD��7BD9�)9D#E

Second language writing tool 225

(with the exception of the categories Style and Continuous text), this is an

encouraging first result as our checker is only a prototype that needs to be completed.

Table 2. Di�erence, in scores, between three commercial grammar checkers and the

prototype for each of 11 eäaluation categories. A positiäe number indicates how

much better the prototype fares and a negatiäe number how much worse

Categories
Correct

Grammar Grammatik Winproof

Verb forms 7 9 0
Verb tense and aspect 6 7 6
Nouns Æ3 0 2
Determiners 4 3 7
Adjectives and adverbs 6 2 4
Prepositions 5 1 4
Pronouns 2 2 3
Conjuctions and inversion 2 2 6
Lexical errors 1 1 1
Style 4 15 34
Continuous text 9 9 28

Total 43 51 95

Fig. 1. Visual representation of the error and false error categories used to compute the
error detection and error overflagging scores of each checker.

Another way of comparing our prototype to existing checkers is to examine error

detection and error overflagging scores separately. This will also help us understand

the results presented already. As can be seen in Figure 1, we considered for each

checker the total number of errors present in the 11 categories of the evaluation kit

(represented by X in the figure) and all the errors that it found (represented by Y).

Next we calculated the errors not detected (C in Figure 1 and Table 1), the errors

detected (A & B; we gave the same status to detections and warnings) and the false

errors detected (that is, the overflaggings; D & E; again we gave the same status to

detections and warnings). We then computed, for each checker, a detection score by

dividing the errors detected (A & B) by the errors present in the evaluation kit (X),

�))CE,��,,, 75#6D 8�9 BD��7BD9�CDB8*7)��0��	/1���.�	��1��

1�����.��1�	
0B,A"B5898�:DB#��))CE,��,,, 75#6D 8�9 BD��7BD9 �4A +9DE)9�89�29*7�5)9"��BA��	�37)����
�5)���,�	,����E*6!97)�)B�)�9�/5#6D 8�9�/BD9�)9D#E�B:�*E9��5+5 "56"9�5)��))CE,��,,, 75#6D 8�9 BD��7BD9�)9D#E

226 E. Cornu and others

and an overflagging score by dividing the false errors detected (D & E) by the errors

found by the checker (Y). Both measures were then expressed as percentages.

As can be seen in Table 3, the error detection scores are rather low for all of the

grammar checkers evaluated. WinProof does the best and our prototype is in second

position followed quite closely by Grammatik and Correct Grammar. Given that our

prototype has a reduced lexicon and a limited number of automata, this result is quite

encouraging. What is particularly rewarding is the error overflagging score for the

prototype which is much lower than that of the commercial grammar checkers. This

is in large part due to our policy of not flagging potential errors in the grammar

checker but letting the user examine them with the problem word highlighter. This

last result explains why we usually do better than the other checkers in the overall

scores presented in Table 2 which take into account both error detection and non-

error overflagging.

In sum, at this early stage of its development, our prototype does quite well against

well established commercial products.

Table 3. Error detection and error oäerflagging scores for the prototype and three

commercial grammar checkers

Prototype Correct Grammatik WinProof
Measure (%) grammar (%) (%) (%)

Error detection 14±5 10±5 12±5 34
Error overflagging 43±5 74 75 76

6 Conclusion

In this paper, we have presented the prototype of a second language writing tool for

French speakers writing in English. It is made up of a set of writing aids, a problem

word highlighter and a grammar checker, and it is characterized by a number of

modules and principles that ensure that non-native speakers receive the help they

need when writing in their second language. Among the modules, we should note the

presence of various aids that can be used during the writing process and a grammar

checker that is tuned to the kind of errors made by such writers. Among the

principles, we should stress limiting overflaggings (these can have serious conse-

quences for non-native speakers) and employing user interaction to help the error

detection and correction process.

So far, some three years of work by about eight researchers (working at various

percentages of time) has been put into the prototype. In addition to the various

processing modules already built and described in this paper, the prototype contains

a large number of pre-processing and detection automata, a number of relatively well

developed writing aids (on-line grammar, list of di�cult words, verb conjugator) and

a finished version of the problem word highlighter. Future work will involve

increasing the size of the grammar checker dictionary, adding automata to cover

more errors, finishing some of the writing aids, and adding a monolingual spell

�))CE,��,,, 75#6D 8�9 BD��7BD9�CDB8*7)��0��	/1���.�	��1��

1�����.��1�	
0B,A"B5898�:DB#��))CE,��,,, 75#6D 8�9 BD��7BD9 �4A +9DE)9�89�29*7�5)9"��BA��	�37)����
�5)���,�	,����E*6!97)�)B�)�9�/5#6D 8�9�/BD9�)9D#E�B:�*E9��5+5 "56"9�5)��))CE,��,,, 75#6D 8�9 BD��7BD9�)9D#E

Second language writing tool 227

checker as well as commercial dictionaries (monolingual English and bilingual

French-English). We should note that from the start, our system was designed for use

outside the laboratory. Thus, the error processing technology that we have

implemented allows for all components to be expanded without risking a degradation

in quality. Once completed, the prototype will be ready for commercial development

which will include, among other things, integrating it into existing word processors

and evaluating it thoroughly with second language users.

Appendix 1

Additional test sentences used in the evaluation kit.

1. Verb form

By which road did you came?

He was died last year.

2. Verb tense and aspect

Every day I am learning things I never knew before.

I lived there for ten years when I left for Geneva.

3. Nouns

It was one of those hot day in June.

The unions are trying to get industry to accept a thirty-five-hours week.

4. Determiners

You are not expected to make noise here.

At the ceremony about hundred people were present.

5. Adjectives and adverbs

This box is more heavy than that one.

This book is twice bigger than the one I bought.

6. Prepositions

My teacher explained it me four times.

Her sister is married with an army o�cer.

7. Pronouns

The vacuum cleaner makes easy to clean the house.

Can I wash the hands before we start?

8. Conjunctions and inversion

Eight thousand thirty-seven

That what some politicians say to get votes is amazing.

9. Lexical errors

This remembers me of my brother.

We got into the train and I put my bag upstairs on the rack.

10. Style

How do you spell labour and color?

She says she needs diapers and a pram.

�))CE,��,,, 75#6D 8�9 BD��7BD9�CDB8*7)��0��	/1���.�	��1��

1�����.��1�	
0B,A"B5898�:DB#��))CE,��,,, 75#6D 8�9 BD��7BD9 �4A +9DE)9�89�29*7�5)9"��BA��	�37)����
�5)���,�	,����E*6!97)�)B�)�9�/5#6D 8�9�/BD9�)9D#E�B:�*E9��5+5 "56"9�5)��))CE,��,,, 75#6D 8�9 BD��7BD9�)9D#E

228 E. Cornu and others

References

Allen, J. (1987) Natural Language Understanding. Menlo Park, CA: Benjamin}Cummings.
Barchan, J., Woodmansee, B. and Yazdani, M. (1986) A PROLOG-based tool for French

grammar analysis. Instructional Science 14 :21–48.
Bodmer, F. (1994) DELENE: un de! sambiguı$ sateur lexical neuronal pour textes en langue

seconde. TRANEL (Traäaux neuchaW telois de linguistique) 21 : 247–263.
Brehony, T. and Ryan, K. (1994) Francophone stylistic grammar checking (FSGC) using link

grammars. Computer Assisted Language Learning 7(3) : 257–269.
Burnage, G. (1990) CELEX – A Guide for Users. Centre for Lexical Information, University of

Nijmegen, The Netherlands.
Catt, M. (1988) Intelligent diagnosis of ungrammaticality in computer-assisted language

instruction. University of Toronto, Technical Report CSRI-218.
Church, K. (1988) A stochastic parts program and noun phrase parser for unrestricted text.

Proceedings of the Second Conference on Applied Natural Language Processing. Austin, Texas.
Corder, S. (1967) The significance of learners’ errors. International Reäiew of Applied

Linguistics 5 : 161–170.
Cornu, E. (1992) The importance of Linguistic Theories in Grammar Checking. Workshop on

natural language processing: first and second language correction of written texts, SGAICO,
Neucha# tel, Switzerland.

Granger, S. and Meunier, F. (1994) Towards a grammar checker for learners of English. In U.
Fries, G. Tottie and P. Schneider (eds.) Creating and Using English Language Corpora.
Amsterdam: Rodopi.

Grosjean, F. (1982) Life with Two Languages : An Introduction to Bilingualism. Cambridge,
MA: Harvard University Press.

Guillemin-Flescher, J. (1981) Syntaxe compareU e du français et de l’anglais. Paris : Ophrys.
Ku$ bler, N. (1992) Verbes de transfert en français et en anglais. Linguisticae Inäestigationes

16(1) : 61–97.
Ku$ bler, N. (1995) L’automatisation de la correction d’erreurs syntaxiques : Application aux

äerbes de transfert en anglais pour francophones. PhD thesis, Publications de l’Institut
Gaspard Monge, Vol 6, Universite! de Marne La Valle! e, France.

Partee, B., ter Meulen, A. and Wall, R. (1990) Mathematical Methods in Linguistics.
Dordrecht : Kluwer.

Payette, J. and Hirst, G. (1992) An intelligent computer-assistant for stylistic instruction.
Computers and the Humanities 26 : 87–120.

Selinker, L. (1972) Interlanguage. International Reäiew of Applied Linguistics 10(3) : 209–231.
Selinker, L. (1992) Rediscoäering Interlanguage. London: Longman.
Silberztein, M. (1993) Dictionnaires eU lectroniques et analyse automatique de textes. Paris :

Masson.
Thurmair, G. (1990) Parsing for grammar and style checking. COLING : 365–370.
Tschichold, C. (1991) The Eäaluation of Computer-Assisted Writing Tools for Non-natiäe

Speakers of English. Englisches Seminar, Universita$ t Basel.
Vinay, J. and Darbelnet, J. (1977) Stylistique compareU e du français et de l’anglais. Paris : Didier.
Winograd, T. (1983) Language as a Cognitiäe Process : Syntax. Reading, MA: Addison-Wesley.
Yazdani, M. (1993) Multilingual Multimedia : Bridging the Language Barrier with Intelligent

Systems. Oxford: Intellect.

�))CE,��,,, 75#6D 8�9 BD��7BD9�CDB8*7)��0��	/1���.�	��1��

1�����.��1�	
0B,A"B5898�:DB#��))CE,��,,, 75#6D 8�9 BD��7BD9 �4A +9DE)9�89�29*7�5)9"��BA��	�37)����
�5)���,�	,����E*6!97)�)B�)�9�/5#6D 8�9�/BD9�)9D#E�B:�*E9��5+5 "56"9�5)��))CE,��,,, 75#6D 8�9 BD��7BD9�)9D#E

